Calculus AB

4-2 (Day 2) Riemann Sums

The following is an approximation for area beneath a curve using Right Hand estimation. The formula used to find such an area is called a **Riemann Sum**.

- 1) What does x_i equal in terms of a? $x_i =$
- 2) What is *a* in terms of *x*? a = _____
- 3) What does *b* equal in terms of *a*? b =_____
- 4) To get a better estimate of the area, what must be true of *n*?
- 5) As *n* increases, which value must decrease?_____
- 6) To get an exact area, what must we do?_____
- 7) As the limit as $n \rightarrow \infty$, $\Delta x \rightarrow \underline{}$

Definite Integral -

Find the area bounded by the *x*-axis and $f(x) = x^2$ between 0 and 2.

Compare all.

Right Hand estimate -

Left Hand estimate -

Midpoint estimate -

Average of Left and Right -

Actual area using integrals -

Use the limit process to find the area of the region between the graph of the function and the *x*-axis over the indicated interval. (pg 269)

58) y = 3x - 2 [2,5]

70) $f(y) = 4y - y^2$ [1,2]

Assignment: Pg. 269 57 - 71 odd